Differential Topology - Retake-Examination (Feburary 28th, 2013)

1. Please...

- (a) make sure your name and student number are written on every sheet of paper that you hand in;
- (b) start each exercise on a new sheet of paper and number each sheet.
- 2. All results from the lectures and the exercises can be taken for granted, but must be stated when used.

Exercise 1 (3 points).

1. Consider the restriction map

$$\alpha: \mathcal{C}^1_W(S^1, \mathbb{R}) \to \mathcal{C}^1_W(S^1 \setminus \{(1,0)\}, \mathbb{R}), \quad f \mapsto f|_{S^1 \setminus \{(1,0)\}}.$$

Prove that the image of α is not an open subset of $\mathcal{C}_W^1(S^1 \setminus \{(1,0)\}, \mathbb{R})$.

2. Let $U \subset \mathbb{R}^n$ be an open subsets. Consider the restriction map

$$\beta: \mathcal{C}^1_S(\mathbb{R}^n, \mathbb{R}) \to \mathcal{C}^1_S(U, \mathbb{R}), \quad f \mapsto f|_U.$$

Prove that the image of β is an open subset of $\mathcal{C}^1_S(U,\mathbb{R})$.

Exercise 2 (4 points). Let M be a compact manifold.

1. Let $f: M \to M$ be a smooth map. A point $x \in M$ is a fixed point of f if f(x) = x. A fixed point x of f is Lefschetz if the differential

$$d_x f: T_x M \to T_x M$$

of f at x does not have +1 as an eigenvalue.

- (a) Prove that if all fixed points of f are Lefschetz, then f has only finitely many fixed points.
- (b) Prove that the set of smooth maps $f: M \to M$, all whose fixed points are Lefschetz, is an open and dense subset of $\mathcal{C}_S^{\infty}(M, M)$.

(Hint: Consider the map $(id, f) : M \to M \times M$).

2. Let $f: M \to M$ be a smooth map, all whose fixed points are Lefschetz. We define the mod 2 Lefschetz number of f to be

$$L(f) := \left(\sum_{x \text{ fixed point of } f} 1\right) \mod 2.$$

If f and g are homotopic smooth maps from M to M, all whose fixed points are Lefschetz, then L(f) = L(g).

Prove that any smooth map $f: S^n \to S^n$, n > 0, of degree 0 has at least one fixed point.

Exercise 3 (3 points). Recall that a smooth function $f: M \to \mathbb{R}$ is called *Morse* if $df: M \to T^*M$ intersects the zero section

$$Z := \{(x, 0) \in T^*M : x \in M\}$$

transversally.

Let M be a submanifold of \mathbb{R}^{q+1} (q>0). For each $v\in S^q$, define

$$f_v: M \to \mathbb{R}, \quad x \mapsto \langle v, x \rangle.$$

Prove that the subset of those $v \in S^q$, for which f_v is a Morse function, is dense in S^q .