Exam Algebraic Geometry 1

31 January 2023

Márton Hablicsek and Martijn Kool

- Time allowed: 3 hours. Note: the exercises continue on the next page!
- You may consult a (clean) copy of the lecture notes, but no other sources.
- Throughout, k denotes an arbitrary algebraically closed field of characteristic 0 and all varieties are varieties over k unless stated otherwise.
- **V** Exercise 1. (1 point) Let X be an affine variety over k. Prove the following statement. There exist two non-empty disjoint closed subsets $X_1, X_2 \subset X$ such that $X = X_1 \cup X_2$ if and only if there exists an element $e \in A(X)$, not equal to the constant function 0 or 1, such that $e^2 = e$.
- **Exercise 2.** (2 points) Let A be an Abelian group. The torsion subgroup A^t of A is defined as the subgroup of torsion elements of A, i.e., $A^t := \{a \in A : \exists n \in \mathbb{Z}_{>0}, na = 0\}$. Any homomorphism of Abelian groups $A \to B$ restricts to a homomorphism $A^t \to B^t$. Now, let X be a *finite* topological space (meaning that the topology consists of finitely many open subsets of X), and F a sheaf of Abelian groups on X. We define the presheaf of abelian groups F^t on X as

$$\mathcal{F}^t(U) = \mathcal{F}(U)^t$$

for any open subset $U \subset X$ with natural restriction morphisms (induced as above). Prove that \mathcal{F}^t is a sheaf.

projective

V Exercise 3. (2 points) Let P be a point on a smooth irreducible curve C of genus g. Prove that any divisor D on C with $\deg(D)=0$ is linearly equivalent to a divisor of the form $D_0-g\cdot P$, where $D_0\geq 0$ and $\deg(D_0)=g$. Hint: Use Riemann-Roch.

Exercise 4. Let $g \in \mathbb{Z}_{\geq 2}$. Consider the projective curve $C' = Z_{\text{proj}}(y^2z^{2g} - f(x,z)) \subset \mathbb{P}^2$, where

$$f(x,z) = \prod_{i=1}^{2g+2} (x - \lambda_i z),$$

and $\lambda_i \in k \setminus \{0\}$ are mutually distinct, and we use homogeneous coordinates (x:y:z) on \mathbb{P}^2 .

V 1. (1 point) Prove that $C' \subset U_1 \cup U_2$, where $U_1 = \mathbb{P}^2 \setminus Z_{\text{proj}}(y)$, $U_2 = \mathbb{P}^2 \setminus Z_{\text{proj}}(z)$ are standard affine charts of \mathbb{P}^2 . Prove that (0:1:0) is the only singular point of C'. Hint: You may use without proof that $y^2 - f(x, 1)$ and $z^{2g} - f(x, z)$ are irreducible polynomials. It is easiest to first consider the chart U_2 .

There exists a smooth *projective* curve C with the following properties. There are two open subsets $U,V\subset C$ covering C with the following properties. There is an isomorphism $\varphi:U\to Z(f_1)\subset \mathbb{A}^2$, where we use coordinates (x,y) on \mathbb{A}^2 and $f_1=y^2-f(x,1)$. There is an isomorphism $\psi:V\to Z(f_2)\subset \mathbb{A}^2$, where we use coordinates (v,w) on \mathbb{A}^2 and $f_2=w^2-f(1,v)$. Finally, $\varphi(U\cap V)=Z(f_1)\setminus Z(x)$, $\psi(U\cap V)=Z(f_2)\setminus Z(v)$ and on the overlap we have an isomorphism

$$\psi \circ \varphi^{-1} : Z(f_1) \setminus Z(x) \subset \mathbb{A}^2 \to Z(f_2) \setminus Z(v) \subset \mathbb{A}^2, \quad (x,y) \mapsto (1/x, y/x^{g+1}) = (v,w).$$

Informally: C is obtained by gluing the affine curves $Z(f_1)$, $Z(f_2)$ via the above isomorphism. These are all facts you do not have to prove. (Continuation on next page.)

1

- ∨ 2. (1 **point**) For any point $P = (\xi, \eta) \in Z(f_1)$ with $\eta \neq 0$, show that $\partial f_1/\partial y|_P \neq 0$. By Exercise 7.7.6, $x \xi$ is a uniformizer at P (you do not have to reprove this). For any point $P = (\lambda_i, 0) \in Z(f_1)$, show that $\partial f_1/\partial x|_P \neq 0$. By Exercise 7.7.6, y is a uniformizer at P (you do not have to reprove this).
 - 3. (1 point) Prove that the rational 1-form (1/y)dx is a regular on $Z(f_1)$.
 - 4. (1 point) Prove that v is a uniformizer at the points $(0, \pm 1)$ of $Z(f_2)$. Prove that (1/y)dx extends to a regular 1-form on C.
- \vee 5. (1 point) Prove that $\deg(\operatorname{div}((1/y)dx)) = 2g 2$. This implies C has genus g.