INSTITUTE FOR THEORETICAL PHYSICS
UTRECHT UNIVERSITY

Exam “Statistical Field Theory”

Thursday, February 2nd, 2023

Duration of the exam: 3 hours

1. Use a separate sheet for every exercise.

2. Write your name and initials on all sheets, and on the first sheet also your student ID
number.

3. Write clearly, unreadable work cannot be correcled.

4. You are NOT allowed to use the book “Ultracold Quantum Fields” or any other book.
You may use one A4 with handwritten notes.

5. Remember to move on to the next guestion if a particular question takes too much
time, and if possible come back to it after you have gone through the whole exam in
this manner.

Exercise 1: Perturbation theory of the external potential.

Consider a system of non-interacting and spin-full fermions with mass m in an external
potential Vpo®, with o the Pauli matrix in the 2 direction. The corresponding action for
the complex field ¢,(x, ) is given by
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and the single-particle eigenstates x% ,(x) obey the Schrédinger equation
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a) (10 pts.) Give the exact Green’s function G, (X, 7; X', 7') by solving for the single-
particle eigenstates and energies €, +.
Hint: Realize that the problem is homogeneous so you can use momentum eigenstates
with momentum £k.



Now we consider Vo® as a perturbation and set up a perturbation theory in the external
potential. Diagrammatically we denote the perturbation —Vy0*/h by the Feynman diagram
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b) (10 pts.) Give also the Green’s function Goqa (X, 7;x’,7’) for the problem with
Vs = 0 in terms of the momentum eigenstates with momentum #ik .

c¢) (15 pts.) Considering Vpo® as a perturbation, give Goor (X, 7; X', 7') the Green’s func-
tion of the fermions up to second order in Vj, both diagrammatically and analytically.

d) (5 pts.) Give the self-energy X, «(x, 7; %', 7') and its Fourier transform X, o (k, dwn).

e) (10 pts.) Give the exact Dyson equation for the exact Green’s function, both dia-
grammatically and analytically, and both in coordinate space and momentum space.

f) (10 pts.) Show that G, (%, 7;%’,7’) from part a) satisfied the Dyson equation from
part €).

g) (5 pts.) Bonus: Explain how the self-energy is modified if the potential is spatially
dependent such as Vp{x)o?. (No calculation is needed.)

Exercise 2: Hubbard-Stratonovich transformation for metallic ferromagnetism
The capacity of the interacting electron-system to form a ferromagnetic phase reflects the
competition between the kinetic energy and the interaction potential. Being forbidden by
the Pauli exclusion principle to occupy the same site, electrons of the same spin can escape
the local Hubbard interaction. However, the same exclusion principle requires the system
to occupy higher-lying single-particle states, raising the states’ kinetic energy. When the
total reduction in potential energy outweighs the increase in kinetic energy, a transition to
a ferromagnetic phase is induced.

QOur starting point is the usual Hubbard Hamiltonian with on-site interaction, U > 0,
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where &y = ¢, — p and

X 1 o
x = ~r—= et a -
¢k \[N 23: ¢J

The sum runs over N lattice sites at positions r; and enumerated by 7. As usual, 7i;, IBL!Lm
denotes the number operator for spin a on site 7. (Note that we set i = 1 throughout this
exercise.)

a) i) (5 pts.) Show that the second term can be written as
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ii) (5 pts.) We will henceforth neglect the first term, as it does not play a role in
the magnetization properties of the system. Show that the second term can be

written as
=-U> (5,

where 57 = 3D e D0 i
iii) (5 pts.) In terms of functional integrals, show that the partition function of the
system reads
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where ¢;(7) is a fermionic field, g%, is the Pauli matrix in the z direction, and
£ = € it, with ji a shifted chemical potential. Derive this shift by considering
the normal ordering of operators when setting up the functional integral.

b) (10 pts.) Perform the Hubbard-Stratonovich transformation to the (on average twice
the local magnetization) field m;(7) to decouple the local quadratic interaction and
show that the partition function becomes
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¢} (10 pts.) Integrate over the fermionic degrees of freedom to obtain

Z = Zofd[m]exp{ %/;ﬂdrzi:mf('r) | n[ln (1+%0=MGO)]},

where Z; and Gy denote the quantum partition function and Green'’s function of the
free electron gas, respectively, and the matrix M; (7 — 7') = mi(7)d; 0 0(7 — 7).

d} (10 pts.) Obtain the effective action for this system up to second order in m;(7). Using
Trin(l — ) = — Yo, 2Tr[z™], show that its Fourier-transformed second-order term

reads
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where II{q, i, ) is introduced as the polarization tensor:
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e) i) (5 pts.) Show that
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ii) (10 pts.) Explicitly perform the Matsubara summation in the polarization tensor

to obtain
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with Ngpp the Fermi-Dirac distribution function.

f} (5 pts.) Using the above results, show that the action of Z up to second order is given
by U
| .
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