EXAMINER: H.T.C. STOOF UTRECHT UNIVERSITY
DATE: 10/11/22 MIDTERM EXAM
TIME: 13:30 - 16:30

Midterm exam for Statistical Field Theory

e Write your name and student number on every sheet.
¢ There are 3 problems. Write your answers to individual problems on different sheets.

e Make sure that your answers are understandable and readable. In doubt, explain
with a short comment on what you are doing.



Problem 1: Energy of non-interacting and interacting electron spins.
We consider two electrons (fermions) with spin 1/2 at two different lattice sites (positions). As
spm—quantlzatlon axis, we choose the z-axis and the lattice sites are indexed by 1 and 2. So,

for example, 1,b1 4 creates an electron at site 1 with spin 1 in the z-direction and 1/)2 1 annihilates

an electron at site 2 with spin | in the z-direction. In general 1,bf'a and 1,[),'0, respectively, create
and annihilate an electron at site ¢ with spin o in the z-direction. We assume, in first instance,
that electrons cannot move from one lattice site to the other.

(i) [5pt] The spin-operator for site % is given by
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where o = (0., 0y, ;) is the vector of Pauli matrices. Show that the operator of site ¢ for
the spin in the z-direction is given by
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[5pt] If both electrons are exposed to a magnetic field in the z-direction, so B = (B, 0,0},
their Hamiltonian is given by

Hg = —uB(5T + 83), (3)

where ¢ is the magnetic moment of electrons. Determine first the normalization constants
and then calculate the system’s average energy for the three different states
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Note: the indices f and a are short for ferromagnetic and antiferromagnetic; however,
this is not important to solve the problem.

[5pt] Now, instead of being exposed to a magnetic field, we assume that the electron
spins are interacting with an interaction described by the Hamiltonian

H;=-J8583, (7)
where J is the exchange constant {a real number). Calculate the system’s average energy

for the states |4/;+) and |y,) from above; see equations (4), (5) and (6).

[5pt] BONUS If the electrons could move from one lattice site to the other, could both
electrons be at the same site? If yes, write down a corresponding state. If no, explain
why it is not possible.



Problem 2: Bosonic and fermionic coherent states. We consider now a sys-
tem with a boson in the single-particle state xg(x} of energy eg and a fermion in the single-
particle state xr(x) of energy ep; that is, we consider a system with the Hamiltonian

H= EB";LL"/;B + fF"I’}"’I’F : (8)

where 9! creates a particle in that state and 7 is the corresponding annihilation operator.
Note that the index specifies, if ! and ¢ are fermionic or bosonic creation and annihilation
operators.

(1) [5pt] BONUS Depending on the particle type (bosons or fermions), is there a largest
possible energy for a system described by H? If yes, give its value. If no, explain why
not.

(i) [10pt] Show that |¢p, ¢r) = etabp—dri} |0) is the coherent state for the single-particle
states xg r(x); that is, show that
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Then, calculate the average energy of the coherent state
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What is the average number of bosons in the coherent state?
(ili) [5pt] Determine from your answer also the derivatives
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Problem 3: Harmonic oscillator with coherent states. In this problem, we
consider only one non-relativistic particle in a quadratic potential V(£) = mw?2?/2 — hw/2.
So, the Hamiltonian is given by

; (15)

where the mass m and the frequency w are just real numbers but Z and p are position and
momentum operators with the commutation relation (&, 5] = #A.

(i) [5pt) Introducing the annihilation and creation operators as
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show that [a,d'] = 1 and that the Hamiltonian can be written as
H = hwats . (18)

(ii) [5pt] Solve the time-dependent Schrédinger equation for the coherent state |a(t)), that
is, give the explicit time dependence of a(t), where |a{t)) is the normalized coherent
state of &, so that &|a(t)) = a(t) lalt)).

(i) [5pt] Determine xz,(t) = {a(t)|  |a(t)) and pa(t) = {(a(t)| pla(t)) explicitly in terms of
a(t). Based on your previous results, argue why the coherent state behaves as a classical
state. For simplicity, you may assume that a{0) is real, which corresponds to a specific
choice for the initial condition at ¢ = 0.

Hint: To argue that the coherent state behaves as a classical state, you might want to
compare Zq(t) and p,(t) to Hamilton's classical equations of motion dp/dt = —8,H(z,p)
and dz/dt = 8,H(x,p), where H(z,p) = p*/2m + mw?z? /2 — hw/2 is the classical Hamil-
tonian.

(iv) [5pt] BONUS What is the essential difference between creation and annihilation opera-
tors of the harmonic oscillator on the one hand and the creation and annihilation operator
of second quantization on the other hand?

Hint: You might want to think about particle numbers.



