
Department of Information and Computing Sciences
Utrecht University

INFOB3TC – Solutions for the Exam

Andres Löh

Wednesday, 3 February 2010, 09:00–12:00

Please keep in mind that often, there are many possible solutions, and that these example
solutions may contain mistakes.

DFAs

1 (10 points). Consider the following Haskell lexer:

lex, lex0, lex1, lex2, lex3 :: String→ Bool
lex = lex0

lex0 (’1’ : xs) = lex1 xs
lex0 (’0’ : xs) = lex2 xs
lex0 = False
lex1 (’0’ : xs) = lex1 xs
lex1 (’1’ : xs) = lex1 xs
lex1 (’.’ : xs) = lex3 xs
lex1 = False
lex2 (’.’ : xs) = lex3 xs
lex2 = False
lex3 (’0’ : xs) = lex3 xs
lex3 (’1’ : xs) = lex3 xs
lex3 [] = True
lex3 = False

Give a deterministic finite state automaton that accepts the same language as the Haskell
code. •

Solution 1.

1

Dit tentamen is in elektronische vorm beschikbaar gemaakt door de TBC van A–Eskwadraat.
A–Eskwadraat kan niet aansprakelijk worden gesteld voor de gevolgen van eventuele fouten
in dit tentamen.

1

0start 1

2

3
1

0

0, 1

.

.

0, 1

◦

Consider the following nondeterministic finite state automaton:

Sstart A

B

C

a

a
a b

a b

2 (4 points). Give two different words of length at least 5 that are accepted by the automa-
ton. •
Solution 2. For example ababa and abaab. ◦
3 (10 points). Transform the automaton given above into an equivalent deterministic finite-
state automaton. It is not necessary to include any unreachable states, but the correspon-
dence with the original automaton should be made obvious, for example by using the
standard construction and naming nodes adequately. •
Solution 3.

Sstart A, C

A, B

A

B

C

a

a

ba

b

a b

a b

◦

Regular expressions

Consider the following Haskell datatype that describes regular expressions over an alpha-
bet type s:

2

2

data Regex s = Empty
| Epsilon
| Const s
| Sequ (Regex s) (Regex s)
| Plus (Regex s) (Regex s)
| Star (Regex s)

4 (4 points). Translate the regular expression

(aa+ b)∗

into a value of type Regex Char. •

Solution 4.

Star (Plus (Sequ (Const ’a’) (Const ’a’)) (Const ’b’))

◦

5 (10 points). Define a function

regexParser :: Eq s⇒ Regex s→ Parser s [s]

using the parser combinators such that regexParser r is a parser for the language described
by the regular expression r. The parser should return the list of symbols recognized. •

Solution 5.

regexParser Empty = empty
regexParser Epsilon = succeed []
regexParser (Const s) = (:[]) <$> symbol s
regexParser (Sequ r1 r2) = (++) <$> regexParser r1 <∗> regexParser r2
regexParser (Plus r1 r2) = regexParser r1 <|> regexParser r2
regexParser (Star r) = concat <$> many (regexParser r)

Handling the end of input was not required, but ok if done. ◦

6 (10 points). Define an algebra type RegexAlgebra and a fold function foldRegex for the
Regex type. (Note that regexParser could be written as a call to foldRegex. It is, however, not
part of the task to do so.) •

Solution 6. The algebra needs to parameters, because Regex already has one:

type RegexAlgebra s r = (r, r, s→ r, r→ r→ r, r→ r→ r, r→ r)

The fold function is straightforward to define:

foldRegex :: RegexAlgebra s r→ Regex s→ r
foldRegex (empty, epsilon, const, sequ, plus, star) r = fold r

where

3

2

fold Empty = empty
fold Epsilon = epsilon
fold (Const s) = const s
fold (Sequ r1 r2) = sequ (fold r1) (fold r2)
fold (Plus r1 r2) = plus (fold r1) (fold r2)
fold (Star r) = star (fold r)

For completeness, regexParser as a fold:

regexParserAlgebra :: Eq s⇒ RegexAlgebra s (Parser s [s])
regexParserAlgebra = (empty,

succeed [],
λs→ (:[]) <$> symbol s,
λx1 x2 → (++) <$> x1 <∗> x2,
(<|>),
λx→ concat <$> many x)

regexParser :: Eq s⇒ Regex s→ Parser s [s]
regexParser = foldRegex regexParserAlgebra

◦

Regular vs. context-free

7 (10 points). Consider the language described by the following grammar with start sym-
bol S:

S → aSa | B
B→ b | bB

(a) Give a characterization of the words that belong to the language.

(b) Is the language regular? If yes, give a regular expression that describes the language.
If not, use the pumping lemma to prove that the language cannot be regular. •

Solution 7. The language described by the grammar is {anbman |m, n ∈ Nat, m > 0}. The
language is not regular. We use the pumping lemma. Assuming the language is regular,
there must be a number n of states of a corresponding finite state automaton. We now
choose the word anban which can be derived from S and therefore is in the language. The
pumping lemma states that for any subword of length at least n, we can pump. So we
choose the subword an, and know that there must be an m > 0 such that am+nban is also in
the language. But that is not the case. Hence, the assumption that the language is regular
must be wrong. ◦

8 (10 points). Consider the language over alphabet A = {a, b} that contains all words with
at least three ‘b’s.

(a) Give a context-free grammar for the language.

4

2

(b) Is the language regular? If yes, give a regular expression that describes the language.
If not, use the pumping lemma to prove that the language cannot be regular. •

Solution 8. A context-free grammar for the language (with start symbol S) is as follows:

S → bA | aS
A→ bB | aA
B → bC | aB
C → bC | aC | ε

This grammar is in fact a regular grammar, so the language is clearly regular. One of many
possible regular expressions for the language is

((a+ b))∗ba∗ba∗b((a+ b))∗

◦

9 (6 points). Let L be a language that is context-free, but not regular. Is it possible that the
complement of L is regular? Explain your answer. •

Solution 9. No, that is not possible. The complement of a regular language is always
regular, so if the complement of L is regular, then the complement of the complement of L
must be regular. But the complement of the complement of L is L itself. ◦

LL and LR parsing

Consider the following grammar, with start symbol S:

S → OSS |V
O→ + | ε
V → 1 | x

10 (8 points). Compute the empty property, the first and follow sets for all nonterminals. Is
the grammar LL(1)? •

Solution 10. Only O can derive the empty string.

first S = {+, 1, x}
first O = {+}
first V = {1, x}
follow S = {+, 1, x}
follow O = {+, 1, x}
follow V = {+, 1, x}

With this, we can see that the grammar is not LL(1), because

lookahead (S→ OSS) = {+, 1, x}
lookahead (S→ V) = {1, x}

and these lookahead sets are not disjoint. ◦

5

2

We augment the grammar above in preparation for LR parsing:

S′ → S$

and S′ becomes the new start symbol.
The LR(0) automaton corresponding to the full grammar looks as follows (each state is

only labelled by its kernel items, and numbered before the production for future reference):

(0) S′ → •S$start

(1) V → 1• (2) V → x• (3) O→ +•

(4) S→ O•SS (5) S→ OS•S

(6) S→ OSS•(7) S→ V•(8) S′ → S•$

1 x
+

S

O

V
V

V

S

O

O

S

1

x

+
1

x +

11 (6 points). Classify each state as a shift state, reduce state, or shift-reduce conflict state.
Note that you may have to compute the closure of the item sets to determine that. Also
mark potential reduce-reduce conflicts. Would applying SLR(1) parsing help to resolve the
potential conflicts? •

Solution 11. The states (1), (2), (3), (6), (7) are all reduce states, and do not gain extra
items by computing the closure. The state (8) is the special end state.

The states (0), (4), (5) gain the following items for closure

S → •OSS
S → •V
O→ •+
O→ •
V → •1
V → •x

Therefore, all three states have a shift-reduce conflict. SLR(1) parsing would not be of any
help here, because we can shift for all three symbols in the alphabet, and the follow set of
O also contains all three symbols. ◦

12 (6 points). Play through the LR parsing process (no extras, neither SLR nor LALR) for
the word +11. Resolve potential shift-reduce conflicts by always choosing to shift, and
potential reduce-reduce conflicts by picking any of the available reduction. •

6

2

Solution 12.

stack input remark
(0) +11$ we always shift, thus move to (3)
(0)+(3) 11$ reduce by O→ +
(0)O(4) 11$ we always shift, thus move to (1)
(0)O(4)1(1) 1$ reduce by V → 1
(0)O(4)V(7) 1$ reduce by S→ V
(0)O(4)S(5) 1$ we always shift, thus move to (1)
(0)O(4)S(5)1(1) $ reduce by V → 1
(0)O(4)S(5)V(7) $ reduce by S→ V
(0)O(4)S(5)S(6) $ reduce by S→ OSS
(0)S(8) $ success

◦

13 (6 points). Are there words in the language that cannot be parsed successfully using the
simplistic strategy from the previous task? If so, give an example. •

Solution 13. Yes, one example is the word 11 which can be derived as follows

S⇒ OSS⇒∗ εVV ⇒∗ 11

Trying to parse this word yields

stack input remark
(0) 11 we always shift, thus move to (1)
(0)1(1) 1 reduce by V → 1
(0)V(7) 1 reduce by S→ V
(0)S(8) 1 failure

◦

14 (meta question). How many out of the 100 possible points do you think you will get for
this exam? •

Solution 14. I ask this question because it is the first time I’m setting an exam for the course,
and I’m genuinely interested how difficult the students perceive the exam to be, and how
good the students are in judging their own performance. Obviously, the answer to this
question has no relevance for the final result. ◦

7

2

8

2

