
Department of Information and Computing Sciences
Utrecht University

INFOB3TC – Solutions for the Exam

Johan Jeuring

Monday, 13 December 2010, 10:30–13:00

Please keep in mind that often, there are many possible solutions, and that these
example solutions may contain mistakes.

Context-free grammars

1 (10 points). Let A = {x, y}. Give context-free grammars for the following languages
over the alphabet A:

(a) L1 = {w |w ∈ A∗, #(x, w) = #(y, w)}

(b) L2 = {w |w ∈ A∗, #(x, w) > #(y, w)}

Here, #(c, w) denotes the number of occurrences of a terminal c in a word w. •

Solution 1.

(a) A context-free grammar for L1 is given in the solution to exercise 2.10 in the lecture
notes. Establish an inductive definition for L1. An example of a grammar that can
be derived from the inductive definition is:

E→ ε | xEy | yEx | EE

There are many other solutions.

(b) Using E, we define the the following grammar for L2:

L→ xE | Ex | ExE
L→ xL | Lx | LL

Again, there are many other solutions.

◦

1

Dit tentamen is in elektronische vorm beschikbaar gemaakt door de TBC van A–Eskwadraat.
A–Eskwadraat kan niet aansprakelijk worden gesteld voor de gevolgen van eventuele fouten
in dit tentamen.

1

Grammar analysis and transformation

Consider the following context-free grammar G over the alphabet {a, b}with start sym-
bol S:

S → Sab | Sa |A
A→ aA | aS

2 (5 points). Is the word aababab in L(G)? If yes, give a parse tree. If not, argue infor-
mally why the word cannot be in the language. •

Solution 2. The word aababab is not in L(G), because L(G) does not contain any finite
words. Any production has a non-terminal in the right-hand side, so it is impossible to
produce a word that only contains terminals. ◦

3 (10 points). Simplify the grammar G by transforming it in steps. Perform as many as
possible of the following transformations: removal of left recursion, left factoring, and
removal of unreachable productions. •

Solution 3. This is the original grammar:

S → Sab | Sa |A
A→ aA | aS

We can first left-factor the grammar:

S → SaR |A
R → b | ε
A→ aT
T → A | S

Now, we remove left recursion:

S → AZ?
Z → aRZ?
R → b | ε
A→ aT
T → A | S

Of course, it is possible to remove left recursion first and perform left factoring later. ◦

New parser combinators

4 (4 points). A price in dollars can be written in two ways: $10, or 10$. So the currency
may appear either before, or after the amount. Write a parser combinator beforeOrAfter
that takes two parsers p and q as argument, and parses p either before or after q:

beforeOrAfter :: Parser Char a→ Parser Char b→ Parser Char (a, b)

•

2

2

Solution 4.

beforeOrAfter p q = (,) <$> p <∗> q
<|> flip (,) <$> q <∗> p

testBOAl = parse (beforeOrAfter (symbol ’$’) natural) "$10"
testBOAr = parse (beforeOrAfter (symbol ’$’) natural) "10$"

◦

5 (6 points). Binding constructs are used in many languages, here are some examples:

x := 3
(x, y)← pairs
f = λx→ x

A binding consists of a pattern to the left of a binding token, and then a value to which
the pattern is bound. I want to define a parser pBind that parses such bindings. pBind
takes a parser for patterns, a parser for the binding token, and a parser for the value to
which the pattern is bound, and returns the pair of values consisting of the pattern and
the value. For the above examples, this would be (x, 3), ((x, y), pairs), and (f , λx → x),
respectively. Define the parser pBind. •

Solution 5.

pBind :: Parser s a→ Parser s b→ Parser s c→ Parser s (a, c)
pBind lhs btoken rhs = (,) <$> lhs <∗ btoken <∗> rhs
testBind = parse (pBind identifier (token ":=") natural) "x:=3"

◦

An efficient choice combinator

6 (10 points). The choice parser combinator is defined by

(<|>) :: Parser s a→ Parser s a→ Parser s a
(p <|> q) xs = p xs ++ qxs

The ++ in the right-hand side of this definition is a source of inefficiency, and might lead
to rather slow parsers. We will use a standard approach to removing this efficiency:
replace append (++) by composition (.). To do this, we need to turn our parser type into
a so-called accumulating parser type. The new parser type looks as follows:

type AccParser s a = [s]→ [(a, [s])]→ [(a, [s])]

Define the parser combinators symbol and <|> using the AccParser type:

symbol :: Char→ AccParser Char Char
(<|>) :: AccParser s a→ AccParser s a→ AccParser s a

•

3

2

Solution 6.

symbol :: Char→ AccParser Char Char
symbol c [] = id
symbol c (y : ys) = if c = = y then ((c, ys):) else id
(<|>) :: AccParser s a→ AccParser s a→ AccParser s a
p <|> q = λxs→ p xs . q xs
testAcc = (symbol ’a’<|> symbol ’b’) "ab" []

◦

Parsing polynomials

In secondary school mathematics you have encountered polynomials. A polynomial
is an expression of finite length constructed from variables and constants, using only
the operations of addition, subtraction, multiplication, and non-negative integer ex-
ponents. Here are some examples of polynomials: x + 2, x2 + 3x − 4, (x + 2)2, and
x5 − 2y7 + z. In this exercise, you will develop a parser for polynomials.

Since it is hard to represent superscripts in a string, we assume that before the above
polynomials are parsed, they are transformed into the following expressions: x+2,
x^2+3x-4, (x+2)^2, and x^5-2y^7+z. So integer exponents are turned into normal con-
stants preceded by a ^.

Here is a grammar for polynomials with start symbol P:

P→ Nat
| Identifier
| P+P
| P-P
| PP
| P^Nat
| (P)

Polynomials can be composed from constant naturals (described by means of the non-
terminal Nat), variables (identifiers, described by means of the nonterminal Identifier),
by using addition, subtraction and multiplication (which is invisible), by exponentia-
tion with a natural number, and parentheses for grouping.

A corresponding abstract syntax in Haskell is:

data P = Const Int
| Var String
| Add P P
| Sub P P
| Mul P P
| Exp P Int deriving Show

4

2

7 (5 points). Is the context-free grammar for polynomials ambiguous? Motivate your
answer. •

Solution 7. The grammar is ambiguous: we can construct two different parse trees for
the sentence x+y+2.

P

P

Identifier

x

+ P

P

Identifier

y

+ P

Nat

2

P

P

P

Identifier

x

+ P

Identifier

y

+ P

Nat

2

◦

8 (10 points). Resolve the operator priorities in the grammar as follows: exponentiation
(^) binds stronger than (invisible) multiplication, which in turn binds stronger than
addition + and subtraction -. Furthermore, multiplication, addition and subtraction
associate to the left. Give the resulting grammar. •

Solution 8. We split P into several nonterminals, corresponding to the different priority
levels:

P → P1
P1 → P1+P2 | P1-P2 | P2
P2 → P2P3 | P3
P3 → P4^Nat | P4
P4 → Nat | Identifier | (P)

◦

9 (10 points). Give a parser that recognizes the grammar from Task 8 and produces a
value of type P:

parseP :: Parser Char P

5

2

You can use chainl and chainr, but if you want more advanced abstractions such as gen
from the lecture notes, you have to define them yourself. You may assume that spaces
are not allowed in the input. Remember to not define left-recursive parsers. •
Solution 9. This is a rather direct transcription of the grammar as a parser using chainl:

parseP = p1

p1 = chainl p2 ((Add <$ symbol ’+’) <|> (Sub <$ symbol ’-’))
p2 = chainl p3 (Mul <$ epsilon)
p3 = Exp <$> p4 <∗ symbol ’^’<∗> natural <|> p4
p4 = Const <$> natural

<|> Var <$> identifier
<|> parenthesised parseP

Using identifier, many1 or greedy1 for the Var case is also ok.
The test-cases work as expected:

ex0 = "x+2"
ex1 = "x^2+3x-4"
ex2 = "(x+2)^2"
ex3 = "x^5-2y^7+z"

tex0 = parse parseP ex0
tex1 = parse parseP ex1
tex2 = parse parseP ex2
tex3 = parse parseP ex3

◦
10 (10 points). Define an algebra type and a fold function for type P. •
Solution 10. We apply the systematic translation:

type PAlgebra r = (Int→ r, — Const
String→ r, — Var
r→ r→ r, — Add
r→ r→ r, — Sub
r→ r→ r, — Mul
r→ Int→ r) — Exp

foldP :: PAlgebra r→ P→ r
foldP (const, var, add, sub, mul, exp) = f

where f (Const x) = const x
f (Var x) = var x
f (Add x1 x2) = add (f x1) (f x2)
f (Sub x1 x2) = sub (f x1) (f x2)
f (Mul x1 x2) = mul (f x1) (f x2)
f (Exp x i) = exp (f x) i

No surprises here. ◦

6

2

11 (5 points). A constant polynomial is a polynomial in which no variables appear. So
4 + 22 is constant, but x + y and x2 − x2 are not.

Using the algebra and fold, determine whether or not a polynomial is constant:

isConstant :: P→ Bool

•

Solution 11.

isConstant = foldP (const True
, const False
, (∧)
, (∧)
, (∧)
, λx i→ x
)

testIsConstantF = parse (isConstant <$> parseP) ex0
testIsConstantT = parse (isConstant <$> parseP) "3+4^2"

◦

12 (5 points). Using the algebra and fold (or alternatively directly), define an evaluator
for polynomials:

evalP :: P→ Env→ Int

The environment of type Env should map free variables to integer values. You can
either use a list of pairs or a finite map with the following interface to represent the
environment:

data Map k v — abstract type, maps keys of type k to values of type v
empty :: Map k v
(!) :: Ord k⇒ Map k v→ k→ v
insert :: Ord k⇒ k→ v→ Map k v→ Map k v
delete :: Ord k⇒ k→ Map k v→ Map k v
member :: Ord k⇒ k→ Map k v→ Bool
fromList :: Ord k⇒ [(k, v)]→ Map k v

•

Solution 12. We assume

type Env = Map String Int

The algebra is similar to the evaluator for expressions discussed in the lectures:

7

2

evalAlgebra :: PAlgebra (Env→ Int)
evalAlgebra = (λx e→ x,

λx e→ e ! x,
λx1 x2 e→ x1 e + x2 e,
λx1 x2 e→ x1 e− x2 e,
λx1 x2 e→ x1 e ∗ x2 e,
λx i e→ (x e)i

)
evalP = foldP evalAlgebra

The environment never changes, so defining

evalAlgebra :: Env→ PAlgebra Int
evalAlgebra e = (id, (e!), (+), (−), (∗), (··))

is simpler and ok as well. ◦

8

2

