Dit tentamen is in elektronische vorm beschikbaar gemaakt door de \mathcal{BC} van A-Eskwadraat. A-Eskwadraat kan niet aansprakelijk worden gesteld voor de gevolgen van eventuele fouten in dit tentamen.

```
FP 2009-2010, Eindtoets 2010, Feb 3, 14.00-17.00
```

Hand in the separate sheet with the 6 solutions. Don't forget to fill out your name! If you are sure your solution does not even come near to what is expected leave the corresponding entry blank; this will considerably speed up the marking process.

1. Flattening search trees (1)

Consider the type of binary search trees:

```
data Tree \ a = Leaf
| Node \ (Tree \ a) \ a \ (Tree \ a)
```

and assume that for each node it holds that the values in the left subtree are strictly smaller than the value of type a in that node, and that the values in the right subtree are strictly larger than that value.

Write a function rft:: Tree $a \rightarrow [a]$ (rft stands for reverse flatten tree), which returns a descending list containing the a-values from the nodes of the tree. Do not use the function reverse!

2. Induction Proof (1)

Prove by induction that map f(x + +y) = map f x + +map f y.

3. Permutations (2)

Write a functions perms :: $[a] \rightarrow [[a]]$ which returns a list containing all permutations of the input list.

4. Substitution and Evaluation (2)

The following data type was used to represent terms in the Prolog interpreter:

```
 \begin{aligned} \textbf{type} \ \textit{Ident} &= \textit{String} \\ \textbf{data} \ \textit{Term} &= \textit{Con Int} \\ &\mid \textit{Var Ident} \\ &\mid \textit{Fun String} \ [\textit{Term}] \\ \textbf{deriving} \ \textit{Eq} \end{aligned}
```

The function $subst :: [(Ident, Term)] \to Term \to Maybe\ Term$ tries to replace all variables in a Term by the Term associated with that variable in the first parameter. In case the Term contains variables which cannot be found in the [(Ident, Term)] the whole substitution returns Nothing, and otherwise $Just\ t$ in which t stands for the result of the substitution.

- (a) Define the function subst.
- (b) Write a function evalTerm :: Term → Int which evaluates a Term, assuming that the Term does not contain free variables anymore, and that the function symbols which occur are either "+" or "-". You may assume these operators have indeed the right number of arguments in the list.

5. Classes (2)

The operators for parser combinators we have seen are introduced in a Haskell module *Control.Applicative* by the classes:

```
class Applicative f where (<*>) :: f (b \rightarrow a) \rightarrow f b \rightarrow f a pure :: a \rightarrow f a — like pSucceed class Alternative f where (<|>) :: f a \rightarrow f a \rightarrow f a fail :: f a
```

Give corresponding instances of these classes for the type constructor *Maybe*. Keep in mind that a *Maybe* result resembles the list of successes method, with the difference that we return at most one successful result.

(see other side for exercise 6)

6. Maximal Segment Sum (2)

(a) Complete the following definition, for the function which computes all consecutive sequences of elements from a list:

```
seys \ xs = fst \ . \ segsinits \ \ xs
segsinits:; [a] \to ([[a]], [[a]])
segsinits \ [] = ([[]], [[]])
segsinits \ (x:xs) = ...
Example of the use of segs:
```

(b) The specification of the maximal segment sum problem is:

```
mss \ xs = foldr \ max \ 0 \ . \ map \ sum \ . \ seqs \$ \ xs
```

Note that in the evaluation of this specification a lot of common computation is going on. Give a solution for mss which does not construct the intermediate list structures, and which takes time linear in the length of the list.

The following hints may be useful:

• First modify your segsinits definition of the previous item into a definition of:

which tuples each list occurring in the resulting lists with its sum.

• Apply the same method once more for the lists of segments and inits, and thus tuple those lists with the maximum value of the individual sums:

```
type Max\ a = a

segsinitis'' :: Num\ a \Rightarrow [a] \rightarrow ((Max\ a, [(Sum\ a, [a])])

, (Max\ a, [(Sum\ a, [a])])
```

- Now remove the superfluous computations from the program.
- Keep in mind that $sum(x:xs) \equiv x + sum(xs)$
- Realise that (a + b) 'max' (a + c) = a + (b 'max' c)

You do not have to give the intermediate results. The hints are just there to help you to derive the solution.

Name:

Student nr:

Program: Inf/CKI/...

1	2	3	4	5	6		
· F	i						
i		i	ı	1	1	į.	
	<u>-</u>			1			
Please leave the above horse blank							

Please leave the above boxes blank.

QUESTION 1: The function rft:

QUESTION 2: The proof that $map\ f\ (xs ++ys) \equiv map\ f\ xs ++map\ f\ ys$ (place the empty and the non-empty case next to each other):

QUESTION 3: The function perms:

QUESTION 4a: The function subst:	
QUESTION 4b: The function evalTerm:	
QUESTION 5: instance Applicative Maybe where	instance Alternative Maybe where
QUESTION 6a: The function segsinitis:	
QUESTION 6b: The function mss :	