DIT TENTAMEN IS IN ELEKTRONISCHE VORM BESCHIKBAAR GEMAAKT DOOR DE 7BC VAN A-ESKWADRAAT.
A—-ESKWADRAAT KAN NIET AANSPRAKELIJK WORDEN GESTELD VOOR DE GEVOLGEN VAN EVENTUELE FOUTEN

IN DIT TENTAMEN.

FP 2009-2010, Eindtoets
2010, Feb 3, 14.00-17.00

Hand in the separate sheet with the § solutions. Don’t forget to fill out your name! If you are sure
your solution does not even come near to what is expected leave the corresponding entry blank; this
will considerably speed up the marking process.

L. Flattening search trees (1)
Consider the type of binary search trees:
data Tree a = Leaf
| Node (Tree a) a (Tree a)
and assume that for each node it holds that the values in the left subtree are strictly smaller
than the value of type a in that node, and that the values in the right subtree are strictly larger
than that value.
Write a function rft:: Tree a — [a] (rft stands for reverse flatten tree), which returns a descending
list containing the a-values from the nodes of the tree. Do not use the function reverse!

2. Induction Proof (1)
Prove by induction that map f (z ++y) = map f z ++map f y.

3. Permutations (2)
Write a functions perms :: [a] — [[a]] which returns a list containing all permutations of the
input list.
4. Substitution and Evaluation (2)
The following data type was used to represent terms in the Prolog interpreter:
type Ident = String
data Term = Con Int
| Var Ident
| Pun String | Term]
deriving Eq
The function subst :: [(Ident, Term)] — Term —» Maybe Term tries to replace all variables in
a Term by the Term associated with that variable in the first parameter. In case the Term
contains variables which cannot be found in the [(/dent, Term)] the whole subsititution returns
Nothing, and otherwise Just t in which ¢ stands for the result of the substitution.

(a) Define the function subst.

(b) Write a function evalTerm :: Term — Int which evaluates a Term, assuming that the
Term does not contain free variables anymore, and that the function symbols which oceur
are either "+" or "~ You may assume these operators have indeed the right number of
arguments in the list,

5. Classes (2)
The operators for parser combinators we have seen are introduced in a Haskell module Control. Applicative
by the classes:
class Applicative f where
(<>juf(b—sa)>fb-sfa
pureia s fa - like pSucceed
class Alternative f where
(<>l fu>fafa
Jaal fa
Give corresponding instances of these classes for the type constructor Maybe. Keep in mind
that a Mugybe result resembles the list of successes method, with the difference that we return
at most one sueccesful result,

(see other side for exercige 6)

6. Maximal Segment Sum (2)

(a) Complete the following definition, for the function which computes all consecutive se-
quences of elements from a list:

seys zs = fst . segsinits $ s
segsinits:; [a] = ([[a]], [[a]])
segsinits || = ([

segsinits (z:xs) = ...
Example of the use of segs:
> segs [1,2,-3,4, 1]
H]v {l)v [4}3 {4’ 1]1 {"‘315 {“‘3’ 4]7 ["3v 47 1]1 {2}7 {27 *3]1 {2» ‘37 4}$ [2’ ’3)4’ 1]»
(11,[1,2],11,2,-3}, (1,2, -3,4],[1,2,-3,4,1]]
(b) The specification of the mazimal segment sum problem is:
mss zs = foldr maz O . map sum . segs $ zs
Note that in the evaluation of this specification a lot of common computation is going
on. Give a solution for mss which does not construct the intermediate list structures, and
which takes time linear in the length of the list.
The following hints may be useful:
¢ First modify your segsinits definition of the previous item into a definition of:
type Sum a = a :
segsinitis’ = Num a = [a] - ([(Sum a,[a])],
[(Sum a,[a])]
which tuples each list occurring in t)he resulting lists with its sum.
e Apply the same method once more for the lists of segments and inits, and thus tuple
those lists with the maximum value of the individual sums:
type Maz a = a
segsinatis” :: Num a = [a] — ((Maz a,[(Sum a,[a])])
s (Maz a, [(Sum a,[a])])
)
¢ Now remove the superfluous computations from the program.
e Keep in mind that sum (r: 2s) = z + sum zs
* Realise that (a + b) ‘maz’ (a + c) = a + (b ‘maz’ ¢)
You do not have to give the intermediate results. The hints are Jjust there to help you to
derive the solution.

o

Name: Student nr: Program: Inf/CKI/...

1 2 3 4 5 6

Please leave the above boxes blank.

QUESTION 1: The function rft:

QUESTION 2: The proof that map f (s +-+ys) = map f zs ++map f ys (place the empty and the
non-empty case next to each other):

QUESTION 3: The function perms :

QUESTION 4a: The function subst:

QUESTION 4b: The function evalTerm.:

QUESTION 5:
instance Applicative Maybe where

QUESTION 6a: The function segsinitis:

QUESTION 6b: The function mass:

instance Alternative Maybe where

