
EXAM FUNCTIONAL PROGRAMMING
Tuesday the 30th of September 2014, 11.00 h. - 13.00 h.

Name:
Student number:

Before you begin: Do not forget to write down your name and student number above. If necessary,
explain your answers (in English or Dutch). For multiple choice questions, clearly circle what you think
is the (one and only) best answer. Use the empty boxes under the other questions to write your answer
and explanations in; if you run out of space, you can use the empty sixth page of the exam. Use the
empty paper provided with this exam only as scratch paper (kladpapier). At the end of the exam, only
hand in the filled-in exam paper. Answers will not only be judged for correctness, but also for clarity
and conciseness. A total of one hundred points can be obtained; divide by 10 to obtain your grade.
Good luck!

In any of your answers below you may (but do not have to) use the following well-known Haskell
functions/operators: id , concat , foldr (and variants), map, filter , const , flip, fst , snd , not, ( . ), elem,
take, drop, takeWhile, dropWhile, head , tail , (++), lookup and all members of the type classes Eq ,
Num, Ord , Show and Read .

1. (i) Write a function intersperse :: a → [a ] → [a ], which places its first argument between the
elements of its second argument; i.e. intersperse ’a’ "xyz" should return "xayaz". You
must use direct recursion.

. . . /8 There are quite a few possible solutions. The most straightforward one is e.g.:

intersperse a (x : y : ys) = x : a : intersperse a (y : ys)
intersperse xs = xs

The second case takes care of the empty xs and an xs of length 1.

(ii) Give an alternative definition of intersperse without direct recursion, using higher-order func-
tions.

. . . /8 Alternative solutions are:

intersperse a xs = tail ( foldr (λx r → a : x : r) [ ] xs)
intersperse a = tail . foldr (λx r → a : x : r) [ ]
intersperse a = tail . foldr (λx → (a:) . (x :)) [ ]
intersperse a = tail . foldr ((a:) . ) . (:)) [ ]
intersperse a = tail . concat . map (λx → [a, x ])
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2. The operator (.) composes two functions. We want to generalise this and implement a function
that composes a list of functions compoR2L of type [(a → a)] → a → a. For example, the call
compoR2L [f , g , h ] v computes the value f (g (h v)).

(i) Implement compoR2L using foldr .

. . . /8

compoR2L :: [a → a ]→ (a → a)
compoR2L = foldr ( . ) id

(ii) Implement compoL2R, that composes functions in the opposite direction. In other words,
compoL2R [f , g , h ] v equals h (g (f v)).

. . . /8

compoL2R :: [a → a ]→ (a → a)
compoL2R = foldl (flip ( . )) id

Using (i) and some kind of list-reversal is also okay. Or should I say use foldl?

(iii) What do you get when you evaluate compoL2R [not, even ] 3?

. . . /5 A type error since not and even do not have the same type.

3. Given is the following definition of a so-called Trie a

data Trie a = Leaf a | Branch a [(Char ,Trie a)]

The idea of a Trie is that every branch and leaf contains a payload value of type a, and that
the children of a branch are indexed by a value of type Char . An example of a Trie Int is the
following:

ex = Branch 40 [(’a’,Branch 20 [(’a’,Leaf 1),
(’b’,Leaf 2)]),

(’b’,Branch 30 [(’a’,Leaf 3),
(’c’,Leaf 4)])

]

(i) Write a function sumIntTrie ::Trie Int → Int that adds all the payloads (of type Int) together.
For example, sumIntTrie (Leaf 3), should return 3, and sumIntTrie ex should return 100.
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. . . /10

sumIntTrie :: Trie Int → Int
sumIntTrie (Leaf v) = v
sumIntTrie (Branch i children) =

i + sum (map (sumIntTrie . snd) children)

(ii) Write a function searchTrie :: [Char ] → Trie a → Maybe a, that follows a path down
the tree as indicated by the first argument, and just returns the payload of the branch or
leaf it reaches in this way, and Nothing otherwise. For example, searchTrie [ ] ex gives
Just 40, searchTrie [’b’] ex gives Just 30, searchTrie [’b’, ’a’ ] ex returns Just 3, and
searchTrie [’b’, ’a’, ’h’] ex returns Nothing . Here you may use a function clookup ::Char →
[(Char , b)] → Maybe b such that clookup c ps returns v if (c, v) is the first pair in ps in
which c is the first component, and Nothing if no such pair exists.

. . . /10

searchTrie :: [Char ]→ Trie a → Maybe a
searchTrie [ ] (Leaf v) = Just v
searchTrie [ ] (Branch v ) = Just v
searchTrie (Leaf ) = Nothing
searchTrie (x : xs) (Branch chds) =
case clookup x chds of

Nothing → Nothing
(Just child)→ searchTrie xs child

(iii) A problem with the definition of Trie is that the type system does not forbid values like
Branch 45 [(’a’,Leaf 33), (’a’,Leaf 78)]. Give a definition for Trie a that does not have
that problem.

. . . /5 Use a function: data Trie a = Leaf a | Branch a (Maybe (Char → Trie a)) but

data Trie a = Leaf a | Branch a (Char → Trie a) is also okay.
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4. . . . /20 (a), (a), (c), (d)

The following multiple choice questions are each worth 5 points.

(i) Let f be any function of type Int → Int . Which expression has the same value as the
following list comprehension?

[f x | x ← [1 . . 6], even x ]

a. map f (filter even [1 . . 6])

b. filter even (map f [1 . . 6])

c. f (map even [1 . . 6])

d. filter f (map even [1 . . 6])

(ii) Given is the following unnecessarily complicated function definition:

f g = f 0 g
where f g h | g < length h = foldr (const (+1)) 0 (h !! g) + f (g + 1) h

| otherwise = 0
const f g = f

Which of the following implementations is equivalent?

a. sum . map length

b. foldr (+) 0 . map (const 1)

c. foldr ((+) length) 0

d. foldl1 (+) . map length

(iii) I Both function application and the → in function types associate to the left so that
Currying becomes possible.

II Function application has precedence over all operators.

a. Both I and II are true

b. Only I is true

c. Only II is true

d. Both I and II are false

(iv) What is the type of map . foldr?

a. (a → a → a)→ [a ]→ [[a ]→ a ]

b. (a → a → a)→ [b ]→ [b → a ]

c. (b → a → a)→ [b ]→ [[a ]→ a ]

d. (b → a → a)→ [a ]→ [[b ]→ a ]
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5. (i) Explain why the expression λx → (x [’1’], x ’1’) is type incorrect.

. . . /5 For x [’1’] and x ’1’ to both be type correct, we should derive a polymorphic type

for x . But x is lambda-bound, not let-bound, and in that case x can not have a polymorphic
type.

(ii) Determine the type of map filter . You should not just write down the type below, but also
explain how you arrived at that type (for example, in the way that this is done in the lecture
notes of this course).

. . . /15 See p. 123, sec. 5.10 in the reader. In case of map filter we have

map :: (a → b)→ [a ]→ [b ]
filter :: (c → Bool)→ [c ]→ [c ],

where we have chosen fresh type variables in the type of filter . The function map gets a
single argument:

map :: (a → b)︸ ︷︷ ︸
argumenttype

→ [a ]→ [b ]︸ ︷︷ ︸
resulttype

.

matching the types of the arguments,

a → b︸ ︷︷ ︸
argumenttype of map

≡ (c → Bool)→ [c ]→ [c ]︸ ︷︷ ︸
type of filter

⇒
{

a ≡ c → Bool
b ≡ [c ]→ [c ],

gives:

map :: (��>
(c → Bool)

a → ���
[c] → [c]

b)︸ ︷︷ ︸
argumenttype

→ [��>
(c → Bool)

a ]→ [���
[c] → [c]

b ]︸ ︷︷ ︸
resulttype

.

and thus

map :: ((c → Bool)→ [c ]→ [c ])︸ ︷︷ ︸
type of filter

→ [c → Bool ]→ [[c ]→ [c ]]︸ ︷︷ ︸
type of map filter

Finally we get for map filter
map filter :: [c → Bool ]→ [[c ]→ [c ]],

or:
map filter :: [a → Bool ]→ [[a ]→ [a ]].
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