
EXAM FUNCTIONAL PROGRAMMING
Thursday the 5th of November 2015, 17.00 h. - 20.00 h.

Name:
Student number:

Before you begin: Do not forget to write down your name and student number above. If necessary,
explain your answers (in English or Dutch). For multiple choice questions, clearly circle what you think
is the (one and only) best answer. Use the empty boxes under the other questions to write your answer
and explanations in. Use the blank paper provided with this exam only as scratch paper (kladpapier).
At the end of the exam, only hand in the filled-in exam paper. Answers will not only be judged for
correctness, but also for clarity and conciseness. A total of one hundred points can be obtained; divide
by 10 to obtain your grade. Good luck!

In any of your answers below you may (but do not have to) use the following well-known Haskell
functions/operators: zipWith, zip, id , concat , foldr (and variants), map, filter , const , all , any , flip, fst ,
snd , not , (.), elem, take, drop, takeWhile, dropWhile, head , tail , repeat , replicate, (++), lookup, max ,
min and all members of the type classes Eq , Num, Ord , Show and Read .

1. (i) To commemorate the 200th birthday of George Boole, define a type class, call it BoolA with
a single argument a, to represent the concept of a boolean algebra. It should support func-
tions that represent binary conjunction (andb), binary disjunction (orb) and unary negation
(notb), as well as two constants bot and top. Here top represents the neutral element of andb,
and bot that of orb.

. . . /6

(ii) Give an instance definition for BoolA Bool .

. . . /6

1

(iii) This exercise was disqualified from the exam due to its incorrect phrasing.

(iv) Give an instance definition for values of type [a] (for any a that is an instance of BoolA) that
extends the operations to lists elementwise. For example, andb [True,False] [True,True,False] =
[andb True True, andb False True] = [True,False]. Note that the length of the result is the
same as the minimum of the length of the two arguments. Again make sure that top and bot
are in fact neutral for the right operator.

. . . /6

(v) Why is it not a good idea to have andb and orb return a list that is as long as the longest
(this could then be done by correctly padding the shorter list)? In which situation would
this not be a problem?

. . . /4

2

2. (i) Implement the function minimum :: (Ord a) => [a] −> a for lists that computes the smallest
element of a list. It should display a nice run-time error message when you pass the empty
list. Also, you must implement it with a fold (choose one of foldr , foldr1 , foldl , and foldl1).

. . . /6

(ii) Which of the other three could you have used as well? Which do you think are most suitable
to use, and why?

. . . /3

(iii) Reflect on why it would or would not be a good idea to use a strict fold function, such as foldl ′.

. . . /3

(iv) A fellow student has defined a function sort :: (Ord a) => [a] −> [a] for sorting a list. Define
a QuickCheck property that verifies that the first element of a sorted list is the smallest in the
list. Make sure the QuickCheck property never crashes: only non-empty lists may contribute
to the test set.

. . . /6

3

3. . . . /20 The following multiple choice questions are each worth 5 points.

(i) What is the type of flip foldr , where flip :: (a −> b −> c) −> b −> a −> c switches the
arguments a and b of a function.

a. (a −> c) −> [a −> (a −> c) −> c] −> a −> c

b. b −> (a −> b −> b) −> [a] −> b

c. It is type incorrect, since foldr takes three arguments.

d. It is type incorrect, but for another reason then the one listed under (c).

(ii) Which expressions are equivalent, i.e., can replace each other in any context?

a. takeWhile p . dropWhile p and dropWhile p . takeWhile p

b. takeWhile p . dropWhile q and takeWhile (\ x −> q x && p x)

c. dropWhile p . takeWhile q and takeWhile q . dropWhile p

d. dropWhile p . dropWhile q and takeWhile (\ x −> p x && q x)

(iii) I A general purpose language cannot be embedded in another general purpose language.

II A major advantage of shallow over deep EDSLs is that you can optimize EDSL programs
before running them.

a. Both I and II are true

b. Only I is true

c. Only II is true

d. Both I and II are false

(iv) Assume ⊥ is an expression that always crashes, and f :: Int −> Int −> Int is a function that
always crashes. Which of the following statements is false:

a. seq (f 1) 3 crashes.

b. (\ x −> ()) ⊥ equals ().

c. head (map ⊥ [1, 2]) crashes.

d. For basic types, seq and deepseq have the same behaviour.

4. Given the following Haskell definition where g :: Int −> Maybe Int and h :: a −> Maybe a

f w = do
x <− g w
let xs = do

z <− [1, 2]
v <− [’a’, ’b’]
return (z , v)

y <− h (snd (head xs))
return y

Complete the following explanation by filling in the gaps:

In the Maybe monad, signals failure and a successful computation. In

the above program, the type of x is , the type of y is , the type of xs is

, and the type of f is . If we call f and would print the

value of xs to the screen then we’d see /10

4

5. The following definitions make Maybe into a monad:

(1) f >>= g = case f of
Nothing −> Nothing
Just x −> g x

(2) return x = Just x

The following is often called the third monad law:

(m >>= f) >>= g = m >>= (\ x −> f x >>= g)

(i) Prove that the law holds if m equals Nothing . Hint: to simplify the proof you may first want
to prove Lemma A that says that Nothing >>= f = Nothing .

. . . /5

(ii) Prove that the law holds for m = Just x . Again, it may be wise to first prove a Lemma B
that Just x >>= f = f x .

. . . /6

5

6. Induction

(1) [] ++ ys = ys
(2) (x : xs) ++ ys = x : (xs ++ ys),

(3) foldr op e [] = e
(4) foldr op e (x : xs) = op x (foldr op e xs)

(i) Given that op is an associative binary operator, and e a neutral element of op, prove by
induction that

foldr op e (xs ++ ys) = op (foldr op e xs) (foldr op e ys) .

. . . /15

6

