EXAM FUNCTIONAL PROGRAMMING
Thursday the 6th of November 2014, 13.30 h. - 16.30 h.

Name:
Student number:

Before you begin: Do not forget to write down your name and student number above. If necessary,
explain your answers (in English or Dutch). For multiple choice questions, clearly circle what you think
is the (one and only) best answer. Use the empty boxes under the other questions to write your answer
and explanations in. Use the empty paper provided with this exam only as scratch paper (kladpapier).
At the end of the exam, only hand in the filled-in exam paper. Answers will not only be judged for
correctness, but also for clarity and conciseness. A total of one hundred points can be obtained; divide
by 10 to obtain your grade. Good luck!

In any of your answers below you may (but do not have to) use the following well-known Haskell
functions/operators: id, concat, foldr (and variants), map, filter, const, flip, fst, snd, not, (.), elem,
take, drop, takeWhile, dropWhile, head, tail, (++), lookup and all members of the type classes Fgq,
Num, Ord, Show and Read.

1. (i) Define a type class Finite a (eindig), that has one member values that enumerates all (finitely
many) values of type a.

(ii) Define a suitable instance for Finite Bool.

(iii) Define a suitable instance for Finite (a, b, ¢) with a list comprehension, for the case that a,
b and ¢ are instances of Finite.

(iv) Why is it not possible to add a member size :: Int (that returns the length of values) to the
Finite type class?




2. In this question we deal with a function segs :: [a] —> [[a]] which returns all the segments of
the argument list. A list L1 is a segment of another list L2, if you can obtain L1 from L2 by
dropping any number of elements (including 0) at the beginning of L2, and dropping any number
of elements (including 0) at the end of L2.

(i) What are the segments of [1,2,3,4]7

(ii) Explain how you can compute segs (z:xs) from segs zs (for example by using concrete values
for z and zs)

(iii) Now, write the function segs :: [a] — [[a]]




(iv) Write a QuickCheck property numberProp::[Int] — Property that tests whether segs zs has
the correct number of segments, but only for input lists of length at least 3.

3. Given is the following datatype for trees:
data Tree = Leaf | Bin Tree Int Tree deriving Eq

(i) Define a function listLike :: Tree — Bool that returns True if every Bin node has at most
one non-Leaf child.

ii) Assume that an instance Arbitrary Tree has been defined, write a generator
i) A that an inst Arbit Tree has been defined, writ t
genNLLTree :: Gen Tree for arbitrary trees that are not list-like.




4. Given are the following definitions (with line numbers):

(1) id z =z

(2) flip f =y =fya

(3) reverse [] =]

(4) reverse (z :xs) = reverse zs ++ [z]
(5) foldr f e ] =e

(6) foldr f e (x:zs) = f x (foldr f e xs)
(7) foldl f e [] =e

(8) foldl f e (x:xs) = foldl f (f e ) xs

(i) Prove by induction that foldr (:) [] = id (use the line numbers above when you refer to a
particular given equation in your proof):




(ii) Prove by induction that foldr f e (reverse zs) = foldl (flip f) e zs for all f, e and zs of
the right type. You may use (without proof) the following lemma: foldr f e (as ++ [b]) =
foldr f (f b e) as for all suitable f, e, as and b (again, use the line numbers when you refer
to a particular given equation in your proof).

../13




5. The following multiple choice questions are each worth 5 points.

(i) Which of the following is true?
a. The function return is idempotent (i.e. return (return a) can safely be replaced by
return a).
b. There exist expressions of type IO (10 Int).
c. If you define an instance of the class Fq you have at least to specify the function (==).
d. The class Enum has a fixed number of instances.
(i) I A jargon is a special kind of domain-specific language.
IT Tt is easier to achieve fluency with a deeply embedded DSL than with a shallowly em-
bedded DSLs.
Both I and II are true
Only I is true

o T

Only II is true
d. Both I and II are false

(iii) Which observation is correct when comparing the types of (map map) map and map (map map)?

a. The type of the first is less polymorphic than the type of the second.
b. The type of the first is more polymorphic than the type of the second.
c. The types are the same, since function composition is associative.
d. One of the expressions is type incorrect.
(iv) What is the type of foldr flip?
a. b—=>(b—=>a—=>0) —=>Ja] >b
b. (a—=>1b)=>[b—>0b—>a—>0
c. (a—=>b)—>Ja—>(a—=>b)—>bl—>a—>b
d. The expression is type incorrect
(v) In the Haskell prelude the list constructor [] has been made an instance of the class Monad:

instance Monad [] where
ma >= a2mb = concat (map a2mb ma)
return a = [a]

Which of the following equals [f = y | © <— exprl,y <— expr2]?

a. do return (f = y)
where do z <— exprl

y <— exprl
b. do z <— exprl
Yy <— exprl
fzy
c. do x <— expri
y <— expr?

return (f x y)
d. do y <— expr2

T <— exprl

return (f = y)



